تحقیق درباره فیثاغورث

راهنمای سایت

سایت اقدام پژوهی -  گزارش تخصصی و فایل های مورد نیاز فرهنگیان

1 -با اطمینان خرید کنید ، پشتیبان سایت همیشه در خدمت شما می باشد .فایل ها بعد از خرید بصورت ورد و قابل ویرایش به دست شما خواهد رسید. پشتیبانی : بااسمس و واتساپ: 09159886819  -  صارمی

2- شما با هر کارت بانکی عضو شتاب (همه کارت های عضو شتاب ) و داشتن رمز دوم کارت خود و cvv2  و تاریخ انقاضاکارت ، می توانید بصورت آنلاین از سامانه پرداخت بانکی  (که کاملا مطمئن و محافظت شده می باشد ) خرید نمائید .

3 - درهنگام خرید اگر ایمیل ندارید ، در قسمت ایمیل ، ایمیل http://up.asemankafinet.ir/view/2488784/email.png  را بنویسید.

http://up.asemankafinet.ir/view/2518890/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%D8%A2%D9%86%D9%84%D8%A7%DB%8C%D9%86.jpghttp://up.asemankafinet.ir/view/2518891/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%DA%A9%D8%A7%D8%B1%D8%AA%20%D8%A8%D9%87%20%DA%A9%D8%A7%D8%B1%D8%AA.jpg

لیست گزارش تخصصی   لیست اقدام پژوهی     لیست کلیه طرح درس ها

پشتیبانی سایت

در صورت هر گونه مشکل در دریافت فایل بعد از خرید به شماره 09159886819 در شاد ، تلگرام و یا نرم افزار ایتا  پیام بدهید
آیدی ما در نرم افزار شاد : @asemankafinet

تحقیق درباره فیثاغورث

بازديد: 2413

تحقیق درباره فیثاغورث

فیثاغورث اهل جزیزهٔ ساموس

فیثاغورث در یونانی Πυθαγορας) ) (حدود ۵۶۹ (پیش از میلاد) - حدود ۴۹۶(پیش از میلاداز فیلسوفان و ریاضیدانان یونان باستان بود. شهرت وی بیشتر بخاطر ارائه قضیهٔ فیثاغورس است. وی را یونانیان یکی از هفت فرزانه بشمار می‌آوردند.

 

زندگی

فیثاغورث در جزیره ساموس، نزدیک کرانه‌های ایونی، زاده شد. او در عهد قبل از)ارشمیدس، زنون و اودوکس (۵۶۹ تا ۵۰۰ (پیش از میلادمی‌زیست.

او در جوانی به سفرهای زیادی رفت و این امکان را پیدا کرد تا با مصر، بابل ومغان ایرانی آشنا شود و دانش آنها را بیاموزد. به طوری که معروف است فیثاغورث، دانش مغان را آموخت. او روی هم رفته، ۲۲ سال در سرزمین‌های خارج از یونان بود و چون از سوی پولوکراتوس، شاه یونان، به آمازیس، فرعون مصر سفارش شده بود، توانست به سادگی به رازهای کاهنان مصری دست یابد. او مدتها در این کشور به سر برد و در خدمت کاهنان و روحانیون مصری به شاگردی پرداخت و آگاهی‌ها و باورهای بسیار کسب کرد واز آنجا روانه بابل شد و دوران شاگردی را از نو آغاز کرد.

وقتی او در حدود سال ۵۳۰، از مصر بازگشت، در زادگاه خود مکتب اخوتی(که امروزه برچسب مکتب فیثاغورث بر آن خورده است) را بنیان گذاشت که طرز فکر اشرافی داشت. هدف او از بنیان نهادن این مکتب این بود که بتواند مطالب عالی ریاضیات و مطالبی را تحت عنوان نظریه‌های فیزیکی و اخلاقی تدریس کند و پیشرفت دهد.

فیثاغورث نیز به مانند سقراط جانب احتیاط را نگاه داشت و چیزی ننوشت . تعالیم وی از طریق شاگردانش به دست ما رسیده است . اکنون روشن شده است که که شاگردان فیثاغورث ، باعث و بانی بخش اعظمی از لباس چهل تکه تفکر ، آداب و رسوم ، ریاضیات ، فلسفه و اندیشه‌های عجیب و غریبی هستند که در مکتب فیثاغورث موجود است.

شیوه تفکر این مکتب با سنت قدیمی دموکراسی، که در آن زمان بر ساموس حاکم بود، متضاد بود. و چون این مشرب فلسفی با مذاق مردم ساموس خوش نیامد، فیثاغورث به ناچار، زادگاهش را ترک گفت و به سمت شبه جزیره آپتین (از سرزمینهای وابسته به یونان) رفت و در کراتون مقیم شد.

در افسانه‌ها چنین آمده است که متعصبان مذهبی و سیاسی، توده‌های مردم را علیه او شوراندند و به ازای نور هدایتی که وی راهنمای ایشان کرده بود مکتب و معبد او را آتش زدند و وی در میان شعله‌های آتش جان سپرد.

این جمله معروف را دوستدارانش در رثای او گفته‌اند: «Sic transit gloria mundi» یعنی «افتخارات جهان چنین می‌گذرند«

وی نظرات ریاضی خویش را با ترهات فلسفی و باورهای دینی درهم آمیخته بود. او در عین حال هم عارف و هم ریاضیدان بود و بقولی یکدهم شهرت او نتیجه نبوغ وی و مابقی ماحصل ارشاد و رسالت اوست.

 

 

فیثاغورث و مسئلهٔ استدلال در ریاضیات

برای آنکه نقش فیثاغورث را در تبیین اصول ریاضیات درک کنیم، لازم است کمی درباره جایگاه ریاضیات در عصر وی و پیشرفتهایی که تا زمان وی صورت گرفته بود، بدانیم که این هم به نوبه خود، در خور توجه است. جالب است بدانید با اینکه مبنای ریاضیات بر «استدلال» استوار است، قبل از فیثاغورث هیچ کس نظر روشنی درباره این موضوع نداشت که استدلال باید مبنی بر مفروضات باشدبه عبارتی استدلال، مسئلهٔ تعریف شده‌ای نبود.

در واقع می‌توان گفت بنا به قول مشهور، فیثاغورث در بین اروپاییان اولین کسی بود که روی این نکته ا صرار ورزید که در هندسه باید ابتدا «اصول موضوع» و «اصول متعارفی» را معین کرد و آنگاه به اتکاء آنها که «مفروضات» هم نامیده می‌شوند، روش استنتاج متوالی را پیش گرفت به پیش رفت. از نظر تاریخی «اصول متعارفی» عبارت بود از «حقیقتی لازم و خود بخود واضح «اینکه فیثاغورث استدلال را وارد ریاضیات کرد، از مهم‌ترین حوادث علمی است و قبل از فیثاغورث، هندسه عبارت بود از مجموعه قواعدی که ماحصل تجارب و ادراکات متفرق بوده‌اند؛ تجارب و قواعدی که هیچگونه ارتباطی با هم نداشتند حتی کسی در آن زمان حدس نمی‌زد مجموعهٔ این قواعد را بتوان از عدهٔ بسیار کمی اصول نتیجه گرفت. در صورتی که امروزه حتی تصور این موضوع که ریاضیات بدون استدلال چه وضع و حالی داشته است برای ما ممکن نیست. اما در آن عصر این موضوع گام بلندی به سوی نظام قدرتمند هندسه محسوب می‌شد.

مجمع فیثاغوری

بنیان فلسفی مجمع فیثاغوری بر آموزش رازهای عدد قرار داشت. به اعتقاد فیثاغورثیان، عدد، بنیان هستی را تشکیل می‌‌دهد، علت هماهنگی و نظم در طبیعت است، رابطه‌های ذاتی جهان ما، حکومت و دوام جاودانی آن را تضمین می‌کند. عدد، قانون طبیعت است، بر خدایان و بر مرگ حکومت می‌‌کند و شرط هرگونه شناخت و دانشی است. چیزها، تقلید و نمونه‌ای از عدد هستند.

چنین برداشت ستایش‌آمیزی از عدد، با خیال‌بافی‌های اسرارآمیزی درآمیخته بود، که همراه با مقدمه‌های ریاضی، از کشورهای خاورنزدیک اقتباس شده بود.

فیثاغوریان، ضمن بررسی نواهای موزون و خوش‌آهنگی که در موسیقی به دست می‌آید، متوجه شدند که آهنگ موزون روی صدای سه سیم، زمانی به دست می‌آید که طول این سیم‌ها، متناسب با عددهای ۳ و ۴ و ۶ باشد. فیثاغوریان این بستگی عدد را در پدیده‌های دیگر نیز پیدا کردند. از جمله، نسبت تعداد وجه‌ها، راسها و یال‌های مکعب هم برابر است با نسبت عددی ۶:۸:۱۲.

همچنین فیثاغوریان متوجه شدند که اگر بخواهیم صفحه‌ای را با یک نوع چندضلعی منتظم بپوشانیم، فقط سه حالت وجود دارد؛ دور و بر یک نقطه از صفحه را می‌توان با ۶ مثلث متساوی‌الاضلاع، با ۴ مربع، و یا با ۳ شش‌ضلعی منتظم پر کرد، به طوری که دور و بر نقطه را به طور کامل بپوشاند. همانطور که مشاهده می‌شود، تعداد این چندضلعی‌ها با همان نسبت ۳:۴:۶ مطابقت دارد و اگر نسبت تعداد اضلاع این چندضلعی‌ها را در نظر بگیریم، به همان نسبت ۳:۴:۶ می‌رسیم.

بر اساس همین مشاهده‌ها بود که مکتب فیثاغوری اعتقاد داشت همهٔ پدیده‌های گیتی از بستگی‌های عددی مشخصی پیروی می‌کنند و یک هماهنگی وجود دارد. از جمله فیثاغوریان گمان می‌کردند فاصلهٔ بین اجرام آسمانی را تا زمین در فضای کیهانی می‌توان با نسبت‌های معینی پیدا کرد. به همین دلیل بود که در مکتب فیثاغوری به بررسی دقیق نسبتها پرداختند. آنها به جز نسبت حسابی و هندسی، دربارهٔ نوعی بستگی هم که به همساز یا توافقی معروف است، بررسی‌هایی انجام دادند.

سه عدد را به نسبت همساز گویند وقتی که وارون آنها به نسبت حسابی باشدبه زبان دیگر سه عدد تشکیل تصاعد همساز یا توافقی می‌دهند، وقتی وارون آنها تصاعد حسابی باشد. سه عدد ۳، ۴ و ۶ به نسبت توافقی هستند، زیرا کسرهای ۱/۳،۱/۴ و ۱/۶ به تصاعد حسابی هستند زیرا:

1 / 4 − 1 / 3 = 1 / 6 − 1 / 4

به مناسبت اهمیت بی‌اندازه‌ای که مکتب فسثاغوری برای عدد قایل بود و فیثاغوریان توجه زیادی به بررسی و کشف ویژگی‌های عددها می‌کردند، در واقع، مقدمه‌های نظریه عددها را بنیان گذاشتند. با وجود این،مکتب فیثاغوری هم، مانند همه یونانی‌های آن زمان، عمل محاسبه را دور از اعتبار خود، که به فلسفه مشغول بودند، می‌دانستند. آنها مردمی را که به کارهای معیشتی و عملی می‌پرداختند و بیشتر از برده‌ها بودند، پست می‌شمردند و لوژستیک می‌خواندند. فیثاغورس می‌گفت که او حساب را والاتر از نیازهای بازرگانی می‌داند.به همین مناسبت در مکتب فیثاغوری، حتی شمار عملی هم مورد توجه قرار نگرفت. آنها تنها در باره ویژگی‌های عددها کار می‌کردند. در ضمن، ویژگی عدد را هم به یاری ساختمان‌های هندسی پیدا می‌کردند. با وجود این،رواج نوعی دستگاه مناسب برای عدد نویسی را در یونان، به فیثاغوریان و یا هواداران نزدیک آنها نسبت می‌دهند.در این نوع عدد نویسی که از فینیقی‌ها گرفته بودند، از حرف‌های الفبای فینیقی، برای نوشتن عددها استفاده شد: ۹ حرف اول الفبا برای عددهای از 1 تا ۹، ۹ حرف بعدی برای نشان دادن دهگان (۲۰،۱۰،...،۹۰) و ۹ حرف بعدی برای صدها (۲۰۰،۱۰۰،...،۹۰۰)برای حرف از عدد تشخیص داده شود، بالای عدد خط کوتاهی می‌گذاشتند. برای نشان دادن عددهای بزرگ‌تر از نشانه‌های اضافی استفاده می‌کردند. وقتی نشانه‌ای شبیه ویرگول را جلو عددی می‌گذاشتند، به معنای هزار برابر آن بود، برای ده هزار برابر عدد، یک نقطه جلو عدد می‌گذاشتند.

 

ریشه‌های شرقی دانش فیثاغورثیان

كالین رنان، پژوهشگر و نویسنده‌ی چند كتاب درباره‌ی تاریخ علم و از نویسندگان دانش‌نامه‌ی بریتانیكا، در كتاب تاریخ علم كمبریج، به گوشه‌هایی از ریشه‌های شرقی دانش یونانیان اشاره كرده است:

فیثاغورث نزدیك سال 560 پیش از میلاد در جزیره‌ی ساموس(در 50 كیلومتری میلتوس) به دنیا آمد. او به یك جنبش نوزایی مذهبی پیوست كه پیروان آن باور داشتند روح می‌تواند از تن بیرون رود و به بدن انسان دیگری وارد شود و این باور به احتمال زیاد ریشه‌ی شرقی دارد. فیثاغورث در جوانی از مصر و بابل دیدن كرد و شاید همین دیدار بود كه به او انگیزه داد ریاضیات بخواند و بگوید همه چیز عدد است.

فیثاغورث می‌توانست قانون 3-4-5 را كه درباره‌ی طول ضلع‌های مثلث قائم الزاویه است، از مصریان آموخته باشد، اما پژوهش‌های اخیر نشان می‌دهد كه در بابل به چیزی برخورد كه ما آن را نسبت فیثاغورثی می‌نامیم. بابلی‌ها پی برده بودند كه عدهای نسبت می‌توانند 3-4-5 یا 6-8-10 یا تركیبی از این دست باشند كه اگر بزرگ‌ترین عددش مربع شود برابر مجموع مربع‌های دو عدد دیگر خواهد بود. این گام بلندی به جلو بود كه فیثاغورثیان به‌خوبی از آن بهره گرفتند.

 

جنبه‌ی دیگری كه فیثاغورثیان فریفته‌اش بودند، میانه‌ها بود. نخست آن‌ها در فكر میانه‌ی عددی بودند(یعنی عدد میانی در تصاعد عددی سه جمله‌ای. برای مثال، در تصاعد 4،5،6، میانه عدد 5 و در تصاعد 4، 8، 12، میانه 8 است). بعید نیست كه این را فیثاغورث در سفرش به بابل آموخته باشد.

اخترشناسی فیثاغورثی آشكارا بدهی فراوانی به بابلی‌ها داشت.

 

قضیه فیثاغورس

قضیه فیثاغورس در هندسه اقلیدسی رابطه‌ای بین اندازه سه ضلع هر مثلث راست‌گوشه است. این قضیه میگوید: در هر مثلث راست‌گوشه مساحت مربعی که یک ضلعش وتر این مثلث باشد برابر با مجموع مساحت‌های مربع‌های ضلع‌های دیگر این مثلث است.

a2 + b2 = c2

 

 

 

 

هندسه اقلیدسی

هندسهٔ اقلیدسی به مجموعهٔ گزاره‌هایِ هندسی‌ای اطلاق می‌شود که به بررسی موجودات ریاضیاتی مثل نقطه و خط می‌پردازد و بر پایه‌هائی که اقلیدسریاضی‌دان یونانی در کتاب خود به‌نام اصول عرضه کرده، بنا شده است. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شده‌اند و بخش بزرگی از آن همان است که در دبیرستان‌ها تدریس می‌شود. کتابِ «اصولِ» اقلیدس یکی از بزرگترین و تأثیرگذارترین کتاب‌ها چه بلحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعه‌ای‌اش بوده است. تا قرن نوزدهم میلادی هر وقت از هندسه سخن می‌رفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» می‌نامند. این مفاهیم را به ابعاد بالاتر از سه نیز می‌توان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید.

 

اصول موضوعه

تمامِ هندسهٔ اقلیدسی (تمامِ قضیه‌هایی که در دبیرستان می‌خوانیم، قضیهٔ فیثاغورس و غیره) می‌توانند از پنج اصلِ موضوعهٔ زیر استخراج شوند:

از هر دو نقطه یک خطِ راست می‌گذرد.

هر پاره‌خط را می‌توان تا بینهایت رویِ خطِ راست امتداد داد.

با یک نقطه به عنوانِ مرکز و یک پاره‌خط به عنوانِ شعاع می‌توان یک دایره رسم نمود.

همهٔ زوایایِ قائمه با هم برابر اند.

اگر یک خط دو خطِ دیگر را قطع کند، آن دو خط در طرفی که جمعِ زوایایِ داخلیِ تولید شده توسطِ خطِ مورب کم‌تر از دو قائمه است به هم می‌رسند (اگر ادامه داده شوند)

برایِ بیانِ این اصولِ موضوعه به مفاهیمی مانندِ نقطه و خط نیاز داریم. همان‌طور که باید چند گزاره را بدونِ اثبات بپذیریم تا بقیهٔ گزاره‌ها استخراج شوند لازم است چند مفهوم را نیز بدونِ تعریف بپذیریم. به این مفاهیم «تعریف‌نشده‌ها» می‌گویند. همان‌طور که دیده می‌شود اصولِ هندسهٔ اقلیدسی به جز اصلِ پنجم بسیار ساده و بدیهی به نظر می‌آیند. به همین‌دلیل از زمانِ اقلیدس ریاضیدانانِ بیشماری در شرق و غرب (من‌جمله خیام ریاضیدانِ ایرانی) تلاش کرده‌اند اصلِ آزاردهندهٔ پنجم را به اثبات برسانند. این کار همواره شکست خورده است. سپس برخی ریاضیدانان تلاش نمودند خلافِ اصلِ پنجم را فرض کنند تا ببینند آیا هندسه‌ای متناقض پدید می‌آید یا نه. از آن‌جا که هیچ تناقضی در هندسه‌هایِ دارایِ اصلِ پنجمِ متفاوت دیده نشد به آن‌ها نامِ هندسه نااقلیدسی را دادند. در نتیجه این مسأله مطرح گردید که تجربه کدام هندسه را تأیید می‌کند. نظریهٔ نسبیت عام به این پرسش پاسخ می‌دهد.

 

هندسه‌ نااقلیدسی

تصویری از سیه حالت اصلی در بحث هندسه‌های نااقلیدسی.

هندسه‌های نااقلیدسی از مطالعهٔ عمیق‌تر موضوع توازی در هندسهٔ اقلیدسی پیدا شده‌اند. دو نیم‌خط موازی عمود بر پاره خط PQ را در نمودار شماره 1 در نظر بگیرد. در هندسهٔ اقلیدسی فاصلهٔ (عمودی) بین دو نیم‌خط هنگامی که به سمت راست حرکت می‌کنیم فاصلهٔ p تا Q باقی می‌مانند؛ ولی در اوایل سدهٔ نوزدهم دوهندسه‌ی دیگر پیشنهاد شد. یکی هندسهٔ هذلولوی )از کلمهٔ یونانی هیپربالئین به معنی "افزایش یافتن") که در آن فاصلهٔ میان نیم‌خط‌ها افزایش می‌یابد و دیگری هندسهٔ بیضوی (elliptic geometry) (از کلمهٔ یونانی ایپلن "کوتاه شدن") که در آن فاصله رفته رفته کم می‌شود و سرانجام نیم‌خط‌ها هم‌دیگر را می‌برند. این هندسهٔ نااقلیدسی بعدها توسط ک.ف. گاوس و گ. ف. ب. ریمان در قالب هندسهٔ کلی‌تری بسط داده شدند. (همین هندسهٔ کلی‌تر است که در نگرهٔ نسبیت عام اینشتاین مورد استفاده قرار گرفته است.)

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 12 فروردین 1394 ساعت: 0:53 منتشر شده است
برچسب ها : ,
نظرات(0)

تحقیق درباره فیثاغورث

بازديد: 1109

تحقیق درباره فیثاغورث

فیثاغورث اهل جزیزهٔ ساموس

فیثاغورث در یونانی Πυθαγορας) ) (حدود ۵۶۹ (پیش از میلاد) - حدود ۴۹۶(پیش از میلاداز فیلسوفان و ریاضیدانان یونان باستان بود. شهرت وی بیشتر بخاطر ارائه قضیهٔ فیثاغورس است. وی را یونانیان یکی از هفت فرزانه بشمار می‌آوردند.

 

زندگی

فیثاغورث در جزیره ساموس، نزدیک کرانه‌های ایونی، زاده شد. او در عهد قبل از)ارشمیدس، زنون و اودوکس (۵۶۹ تا ۵۰۰ (پیش از میلادمی‌زیست.

او در جوانی به سفرهای زیادی رفت و این امکان را پیدا کرد تا با مصر، بابل ومغان ایرانی آشنا شود و دانش آنها را بیاموزد. به طوری که معروف است فیثاغورث، دانش مغان را آموخت. او روی هم رفته، ۲۲ سال در سرزمین‌های خارج از یونان بود و چون از سوی پولوکراتوس، شاه یونان، به آمازیس، فرعون مصر سفارش شده بود، توانست به سادگی به رازهای کاهنان مصری دست یابد. او مدتها در این کشور به سر برد و در خدمت کاهنان و روحانیون مصری به شاگردی پرداخت و آگاهی‌ها و باورهای بسیار کسب کرد واز آنجا روانه بابل شد و دوران شاگردی را از نو آغاز کرد.

وقتی او در حدود سال ۵۳۰، از مصر بازگشت، در زادگاه خود مکتب اخوتی(که امروزه برچسب مکتب فیثاغورث بر آن خورده است) را بنیان گذاشت که طرز فکر اشرافی داشت. هدف او از بنیان نهادن این مکتب این بود که بتواند مطالب عالی ریاضیات و مطالبی را تحت عنوان نظریه‌های فیزیکی و اخلاقی تدریس کند و پیشرفت دهد.

فیثاغورث نیز به مانند سقراط جانب احتیاط را نگاه داشت و چیزی ننوشت . تعالیم وی از طریق شاگردانش به دست ما رسیده است . اکنون روشن شده است که که شاگردان فیثاغورث ، باعث و بانی بخش اعظمی از لباس چهل تکه تفکر ، آداب و رسوم ، ریاضیات ، فلسفه و اندیشه‌های عجیب و غریبی هستند که در مکتب فیثاغورث موجود است.

شیوه تفکر این مکتب با سنت قدیمی دموکراسی، که در آن زمان بر ساموس حاکم بود، متضاد بود. و چون این مشرب فلسفی با مذاق مردم ساموس خوش نیامد، فیثاغورث به ناچار، زادگاهش را ترک گفت و به سمت شبه جزیره آپتین (از سرزمینهای وابسته به یونان) رفت و در کراتون مقیم شد.

در افسانه‌ها چنین آمده است که متعصبان مذهبی و سیاسی، توده‌های مردم را علیه او شوراندند و به ازای نور هدایتی که وی راهنمای ایشان کرده بود مکتب و معبد او را آتش زدند و وی در میان شعله‌های آتش جان سپرد.

این جمله معروف را دوستدارانش در رثای او گفته‌اند: «Sic transit gloria mundi» یعنی «افتخارات جهان چنین می‌گذرند«

وی نظرات ریاضی خویش را با ترهات فلسفی و باورهای دینی درهم آمیخته بود. او در عین حال هم عارف و هم ریاضیدان بود و بقولی یکدهم شهرت او نتیجه نبوغ وی و مابقی ماحصل ارشاد و رسالت اوست.

 

 

فیثاغورث و مسئلهٔ استدلال در ریاضیات

برای آنکه نقش فیثاغورث را در تبیین اصول ریاضیات درک کنیم، لازم است کمی درباره جایگاه ریاضیات در عصر وی و پیشرفتهایی که تا زمان وی صورت گرفته بود، بدانیم که این هم به نوبه خود، در خور توجه است. جالب است بدانید با اینکه مبنای ریاضیات بر «استدلال» استوار است، قبل از فیثاغورث هیچ کس نظر روشنی درباره این موضوع نداشت که استدلال باید مبنی بر مفروضات باشدبه عبارتی استدلال، مسئلهٔ تعریف شده‌ای نبود.

در واقع می‌توان گفت بنا به قول مشهور، فیثاغورث در بین اروپاییان اولین کسی بود که روی این نکته ا صرار ورزید که در هندسه باید ابتدا «اصول موضوع» و «اصول متعارفی» را معین کرد و آنگاه به اتکاء آنها که «مفروضات» هم نامیده می‌شوند، روش استنتاج متوالی را پیش گرفت به پیش رفت. از نظر تاریخی «اصول متعارفی» عبارت بود از «حقیقتی لازم و خود بخود واضح «اینکه فیثاغورث استدلال را وارد ریاضیات کرد، از مهم‌ترین حوادث علمی است و قبل از فیثاغورث، هندسه عبارت بود از مجموعه قواعدی که ماحصل تجارب و ادراکات متفرق بوده‌اند؛ تجارب و قواعدی که هیچگونه ارتباطی با هم نداشتند حتی کسی در آن زمان حدس نمی‌زد مجموعهٔ این قواعد را بتوان از عدهٔ بسیار کمی اصول نتیجه گرفت. در صورتی که امروزه حتی تصور این موضوع که ریاضیات بدون استدلال چه وضع و حالی داشته است برای ما ممکن نیست. اما در آن عصر این موضوع گام بلندی به سوی نظام قدرتمند هندسه محسوب می‌شد.

مجمع فیثاغوری

بنیان فلسفی مجمع فیثاغوری بر آموزش رازهای عدد قرار داشت. به اعتقاد فیثاغورثیان، عدد، بنیان هستی را تشکیل می‌‌دهد، علت هماهنگی و نظم در طبیعت است، رابطه‌های ذاتی جهان ما، حکومت و دوام جاودانی آن را تضمین می‌کند. عدد، قانون طبیعت است، بر خدایان و بر مرگ حکومت می‌‌کند و شرط هرگونه شناخت و دانشی است. چیزها، تقلید و نمونه‌ای از عدد هستند.

چنین برداشت ستایش‌آمیزی از عدد، با خیال‌بافی‌های اسرارآمیزی درآمیخته بود، که همراه با مقدمه‌های ریاضی، از کشورهای خاورنزدیک اقتباس شده بود.

فیثاغوریان، ضمن بررسی نواهای موزون و خوش‌آهنگی که در موسیقی به دست می‌آید، متوجه شدند که آهنگ موزون روی صدای سه سیم، زمانی به دست می‌آید که طول این سیم‌ها، متناسب با عددهای ۳ و ۴ و ۶ باشد. فیثاغوریان این بستگی عدد را در پدیده‌های دیگر نیز پیدا کردند. از جمله، نسبت تعداد وجه‌ها، راسها و یال‌های مکعب هم برابر است با نسبت عددی ۶:۸:۱۲.

همچنین فیثاغوریان متوجه شدند که اگر بخواهیم صفحه‌ای را با یک نوع چندضلعی منتظم بپوشانیم، فقط سه حالت وجود دارد؛ دور و بر یک نقطه از صفحه را می‌توان با ۶ مثلث متساوی‌الاضلاع، با ۴ مربع، و یا با ۳ شش‌ضلعی منتظم پر کرد، به طوری که دور و بر نقطه را به طور کامل بپوشاند. همانطور که مشاهده می‌شود، تعداد این چندضلعی‌ها با همان نسبت ۳:۴:۶ مطابقت دارد و اگر نسبت تعداد اضلاع این چندضلعی‌ها را در نظر بگیریم، به همان نسبت ۳:۴:۶ می‌رسیم.

بر اساس همین مشاهده‌ها بود که مکتب فیثاغوری اعتقاد داشت همهٔ پدیده‌های گیتی از بستگی‌های عددی مشخصی پیروی می‌کنند و یک هماهنگی وجود دارد. از جمله فیثاغوریان گمان می‌کردند فاصلهٔ بین اجرام آسمانی را تا زمین در فضای کیهانی می‌توان با نسبت‌های معینی پیدا کرد. به همین دلیل بود که در مکتب فیثاغوری به بررسی دقیق نسبتها پرداختند. آنها به جز نسبت حسابی و هندسی، دربارهٔ نوعی بستگی هم که به همساز یا توافقی معروف است، بررسی‌هایی انجام دادند.

سه عدد را به نسبت همساز گویند وقتی که وارون آنها به نسبت حسابی باشدبه زبان دیگر سه عدد تشکیل تصاعد همساز یا توافقی می‌دهند، وقتی وارون آنها تصاعد حسابی باشد. سه عدد ۳، ۴ و ۶ به نسبت توافقی هستند، زیرا کسرهای ۱/۳،۱/۴ و ۱/۶ به تصاعد حسابی هستند زیرا:

1 / 4 − 1 / 3 = 1 / 6 − 1 / 4

به مناسبت اهمیت بی‌اندازه‌ای که مکتب فسثاغوری برای عدد قایل بود و فیثاغوریان توجه زیادی به بررسی و کشف ویژگی‌های عددها می‌کردند، در واقع، مقدمه‌های نظریه عددها را بنیان گذاشتند. با وجود این،مکتب فیثاغوری هم، مانند همه یونانی‌های آن زمان، عمل محاسبه را دور از اعتبار خود، که به فلسفه مشغول بودند، می‌دانستند. آنها مردمی را که به کارهای معیشتی و عملی می‌پرداختند و بیشتر از برده‌ها بودند، پست می‌شمردند و لوژستیک می‌خواندند. فیثاغورس می‌گفت که او حساب را والاتر از نیازهای بازرگانی می‌داند.به همین مناسبت در مکتب فیثاغوری، حتی شمار عملی هم مورد توجه قرار نگرفت. آنها تنها در باره ویژگی‌های عددها کار می‌کردند. در ضمن، ویژگی عدد را هم به یاری ساختمان‌های هندسی پیدا می‌کردند. با وجود این،رواج نوعی دستگاه مناسب برای عدد نویسی را در یونان، به فیثاغوریان و یا هواداران نزدیک آنها نسبت می‌دهند.در این نوع عدد نویسی که از فینیقی‌ها گرفته بودند، از حرف‌های الفبای فینیقی، برای نوشتن عددها استفاده شد: ۹ حرف اول الفبا برای عددهای از 1 تا ۹، ۹ حرف بعدی برای نشان دادن دهگان (۲۰،۱۰،...،۹۰) و ۹ حرف بعدی برای صدها (۲۰۰،۱۰۰،...،۹۰۰)برای حرف از عدد تشخیص داده شود، بالای عدد خط کوتاهی می‌گذاشتند. برای نشان دادن عددهای بزرگ‌تر از نشانه‌های اضافی استفاده می‌کردند. وقتی نشانه‌ای شبیه ویرگول را جلو عددی می‌گذاشتند، به معنای هزار برابر آن بود، برای ده هزار برابر عدد، یک نقطه جلو عدد می‌گذاشتند.

 

ریشه‌های شرقی دانش فیثاغورثیان

كالین رنان، پژوهشگر و نویسنده‌ی چند كتاب درباره‌ی تاریخ علم و از نویسندگان دانش‌نامه‌ی بریتانیكا، در كتاب تاریخ علم كمبریج، به گوشه‌هایی از ریشه‌های شرقی دانش یونانیان اشاره كرده است:

فیثاغورث نزدیك سال 560 پیش از میلاد در جزیره‌ی ساموس(در 50 كیلومتری میلتوس) به دنیا آمد. او به یك جنبش نوزایی مذهبی پیوست كه پیروان آن باور داشتند روح می‌تواند از تن بیرون رود و به بدن انسان دیگری وارد شود و این باور به احتمال زیاد ریشه‌ی شرقی دارد. فیثاغورث در جوانی از مصر و بابل دیدن كرد و شاید همین دیدار بود كه به او انگیزه داد ریاضیات بخواند و بگوید همه چیز عدد است.

فیثاغورث می‌توانست قانون 3-4-5 را كه درباره‌ی طول ضلع‌های مثلث قائم الزاویه است، از مصریان آموخته باشد، اما پژوهش‌های اخیر نشان می‌دهد كه در بابل به چیزی برخورد كه ما آن را نسبت فیثاغورثی می‌نامیم. بابلی‌ها پی برده بودند كه عدهای نسبت می‌توانند 3-4-5 یا 6-8-10 یا تركیبی از این دست باشند كه اگر بزرگ‌ترین عددش مربع شود برابر مجموع مربع‌های دو عدد دیگر خواهد بود. این گام بلندی به جلو بود كه فیثاغورثیان به‌خوبی از آن بهره گرفتند.

 

جنبه‌ی دیگری كه فیثاغورثیان فریفته‌اش بودند، میانه‌ها بود. نخست آن‌ها در فكر میانه‌ی عددی بودند(یعنی عدد میانی در تصاعد عددی سه جمله‌ای. برای مثال، در تصاعد 4،5،6، میانه عدد 5 و در تصاعد 4، 8، 12، میانه 8 است). بعید نیست كه این را فیثاغورث در سفرش به بابل آموخته باشد.

اخترشناسی فیثاغورثی آشكارا بدهی فراوانی به بابلی‌ها داشت.

 

قضیه فیثاغورس

قضیه فیثاغورس در هندسه اقلیدسی رابطه‌ای بین اندازه سه ضلع هر مثلث راست‌گوشه است. این قضیه میگوید: در هر مثلث راست‌گوشه مساحت مربعی که یک ضلعش وتر این مثلث باشد برابر با مجموع مساحت‌های مربع‌های ضلع‌های دیگر این مثلث است.

a2 + b2 = c2

 

 

 

 

هندسه اقلیدسی

هندسهٔ اقلیدسی به مجموعهٔ گزاره‌هایِ هندسی‌ای اطلاق می‌شود که به بررسی موجودات ریاضیاتی مثل نقطه و خط می‌پردازد و بر پایه‌هائی که اقلیدسریاضی‌دان یونانی در کتاب خود به‌نام اصول عرضه کرده، بنا شده است. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شده‌اند و بخش بزرگی از آن همان است که در دبیرستان‌ها تدریس می‌شود. کتابِ «اصولِ» اقلیدس یکی از بزرگترین و تأثیرگذارترین کتاب‌ها چه بلحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعه‌ای‌اش بوده است. تا قرن نوزدهم میلادی هر وقت از هندسه سخن می‌رفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» می‌نامند. این مفاهیم را به ابعاد بالاتر از سه نیز می‌توان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید.

 

اصول موضوعه

تمامِ هندسهٔ اقلیدسی (تمامِ قضیه‌هایی که در دبیرستان می‌خوانیم، قضیهٔ فیثاغورس و غیره) می‌توانند از پنج اصلِ موضوعهٔ زیر استخراج شوند:

از هر دو نقطه یک خطِ راست می‌گذرد.

هر پاره‌خط را می‌توان تا بینهایت رویِ خطِ راست امتداد داد.

با یک نقطه به عنوانِ مرکز و یک پاره‌خط به عنوانِ شعاع می‌توان یک دایره رسم نمود.

همهٔ زوایایِ قائمه با هم برابر اند.

اگر یک خط دو خطِ دیگر را قطع کند، آن دو خط در طرفی که جمعِ زوایایِ داخلیِ تولید شده توسطِ خطِ مورب کم‌تر از دو قائمه است به هم می‌رسند (اگر ادامه داده شوند)

برایِ بیانِ این اصولِ موضوعه به مفاهیمی مانندِ نقطه و خط نیاز داریم. همان‌طور که باید چند گزاره را بدونِ اثبات بپذیریم تا بقیهٔ گزاره‌ها استخراج شوند لازم است چند مفهوم را نیز بدونِ تعریف بپذیریم. به این مفاهیم «تعریف‌نشده‌ها» می‌گویند. همان‌طور که دیده می‌شود اصولِ هندسهٔ اقلیدسی به جز اصلِ پنجم بسیار ساده و بدیهی به نظر می‌آیند. به همین‌دلیل از زمانِ اقلیدس ریاضیدانانِ بیشماری در شرق و غرب (من‌جمله خیام ریاضیدانِ ایرانی) تلاش کرده‌اند اصلِ آزاردهندهٔ پنجم را به اثبات برسانند. این کار همواره شکست خورده است. سپس برخی ریاضیدانان تلاش نمودند خلافِ اصلِ پنجم را فرض کنند تا ببینند آیا هندسه‌ای متناقض پدید می‌آید یا نه. از آن‌جا که هیچ تناقضی در هندسه‌هایِ دارایِ اصلِ پنجمِ متفاوت دیده نشد به آن‌ها نامِ هندسه نااقلیدسی را دادند. در نتیجه این مسأله مطرح گردید که تجربه کدام هندسه را تأیید می‌کند. نظریهٔ نسبیت عام به این پرسش پاسخ می‌دهد.

 

هندسه‌ نااقلیدسی

تصویری از سیه حالت اصلی در بحث هندسه‌های نااقلیدسی.

هندسه‌های نااقلیدسی از مطالعهٔ عمیق‌تر موضوع توازی در هندسهٔ اقلیدسی پیدا شده‌اند. دو نیم‌خط موازی عمود بر پاره خط PQ را در نمودار شماره 1 در نظر بگیرد. در هندسهٔ اقلیدسی فاصلهٔ (عمودی) بین دو نیم‌خط هنگامی که به سمت راست حرکت می‌کنیم فاصلهٔ p تا Q باقی می‌مانند؛ ولی در اوایل سدهٔ نوزدهم دوهندسه‌ی دیگر پیشنهاد شد. یکی هندسهٔ هذلولوی )از کلمهٔ یونانی هیپربالئین به معنی "افزایش یافتن") که در آن فاصلهٔ میان نیم‌خط‌ها افزایش می‌یابد و دیگری هندسهٔ بیضوی (elliptic geometry) (از کلمهٔ یونانی ایپلن "کوتاه شدن") که در آن فاصله رفته رفته کم می‌شود و سرانجام نیم‌خط‌ها هم‌دیگر را می‌برند. این هندسهٔ نااقلیدسی بعدها توسط ک.ف. گاوس و گ. ف. ب. ریمان در قالب هندسهٔ کلی‌تری بسط داده شدند. (همین هندسهٔ کلی‌تر است که در نگرهٔ نسبیت عام اینشتاین مورد استفاده قرار گرفته است.)

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 12 فروردین 1394 ساعت: 0:53 منتشر شده است
برچسب ها : ,
نظرات(0)

شبکه اجتماعی ما

   
     

موضوعات

پيوندهاي روزانه

تبلیغات در سایت

پیج اینستاگرام ما را دنبال کنید :

فرم های  ارزشیابی معلمان ۱۴۰۲

با اطمینان خرید کنید

پشتیبان سایت همیشه در خدمت شماست.

 سامانه خرید و امن این سایت از همه  لحاظ مطمئن می باشد . یکی از مزیت های این سایت دیدن بیشتر فایل های پی دی اف قبل از خرید می باشد که شما می توانید در صورت پسندیدن فایل را خریداری نمائید .تمامی فایل ها بعد از خرید مستقیما دانلود می شوند و همچنین به ایمیل شما نیز فرستاده می شود . و شما با هرکارت بانکی که رمز دوم داشته باشید می توانید از سامانه بانک سامان یا ملت خرید نمائید . و بازهم اگر بعد از خرید موفق به هردلیلی نتوانستیدفایل را دریافت کنید نام فایل را به شماره همراه   09159886819  در تلگرام ، شاد ، ایتا و یا واتساپ ارسال نمائید، در سریعترین زمان فایل برای شما  فرستاده می شود .

درباره ما

آدرس خراسان شمالی - اسفراین - سایت علمی و پژوهشی آسمان -کافی نت آسمان - هدف از راه اندازی این سایت ارائه خدمات مناسب علمی و پژوهشی و با قیمت های مناسب به فرهنگیان و دانشجویان و دانش آموزان گرامی می باشد .این سایت دارای بیشتر از 12000 تحقیق رایگان نیز می باشد .که براحتی مورد استفاده قرار می گیرد .پشتیبانی سایت : 09159886819-09338737025 - صارمی سایت علمی و پژوهشی آسمان , اقدام پژوهی, گزارش تخصصی درس پژوهی , تحقیق تجربیات دبیران , پروژه آماری و spss , طرح درس